MyBlog

XDCTF2015_re100

last modified: 2015-10-12 23:22

0x01 The .init and .fini Sections

题目:http://www.ru.j-npcs.org/usoft/WWW/www_debian.org/Documentation/elf/node3.html

简单说一下,即.init中的指令,在main()函数之前执行,.fini中的指令,在main()函数返回后执行;

一段代码验证之:

#include <stdio.h>  

void my_init() __attribute__((constructor));
void my_fini() __attribute__((destructor));
 
void my_init()  
{  
    printf("init?\n");  
}  

void my_fini()  
{  
    printf("fini?\n");  
}

int main()
{
	printf("I'm in main()\n");
	return 0;
}

输出结果:

ez[@ubuntu](http://my.oschina.net/u/555627):~/xdctf$ ./init 
init?
I'm in main()
fini?

下面链接,有更详细介绍:

https://www.codeaurora.org/git/projects/qrd-gb-ssss-7225/repository/revisions/e34c19e51778b1f44682192040db577967da636b/entry/android/bionic/linker/README.TXT

DT_INIT:ELF loaded时执行
DT_INIT_ARRAY:其中的函数被顺序执行,完成main()前的初始化操作,通常存放于.init_array段
DT_FINI:ELF unloaded时或进程结束时执行
DT_FINI_ARRAY:与DT_INIT_ARRAY类似,用于main()后扫尾

0x02 IDA静态分析

用IDA打开re100,发现是一个Linux x86_64程序;没有main()函数,可能编译时修改了入口函数,可参考:

http://stackoverflow.com/questions/8116648/why-is-the-elf-entry-point-0x8048000-not-changeable-with-the-ld-e-option?lq=1

http://stackoverflow.com/questions/4272316/in-an-elf-file-how-does-the-address-for-start-get-detemined

没有_start函数,但发现有一处start函数与_start函数类似,猜测ld时被修改,具体可参考:

http://eli.thegreenplace.net/2012/08/13/how-statically-linked-programs-run-on-linux/

我们平常所说的__libc_start_main()函数,其实在_start()中被调用:

.text:0000000000400590                 public _start
.text:0000000000400590 _start          proc near
.text:0000000000400590                 xor     ebp, ebp
.text:0000000000400592                 mov     r9, rdx
.text:0000000000400595                 pop     rsi
.text:0000000000400596                 mov     rdx, rsp
.text:0000000000400599                 and     rsp, 0FFFFFFFFFFFFFFF0h
.text:000000000040059D                 push    rax
.text:000000000040059E                 push    rsp
.text:000000000040059F                 mov     r8, offset __libc_csu_fini
.text:00000000004005A6                 mov     rcx, offset __libc_csu_init
.text:00000000004005AD                 mov     rdi, offset main
.text:00000000004005B4                 call    ___libc_start_main
.text:00000000004005B9                 hlt
.text:00000000004005B9 _start          endp

比较一下正常的_start与该题目中的start函数发现,入口被从main()修改为了sub_4008E1():

### 修改后 start
.text:000000000040053E                 push    rsp
.text:000000000040053F                 mov     r8, offset nullsub_1
.text:0000000000400546                 mov     rcx, offset loc_400AA0
.text:000000000040054D                 mov     rdi, offset sub_4008E1
.text:0000000000400554                 call    ___libc_start_main
### 正常的 _start
.text:000000000040059E                 push    rsp
.text:000000000040059F                 mov     r8, offset __libc_csu_fini
.text:00000000004005A6                 mov     rcx, offset __libc_csu_init
.text:00000000004005AD                 mov     rdi, offset main
.text:00000000004005B4                 call    ___libc_start_main

继续分析sub_4008E1()函数,其开始处有ptrace()的简单反调试;如果需要gdb调试,则nop之即可,这里静态分析暂不管它;

初步分析此函数功能,首先栈上有两个字符串,分别为命名为g_key和g_enc:

0x0601280   g_key "\\|Gq\\@?BelTtK5L`\\|D`d42;"
0x6012A0    g_enc ";%#848N!0Z?7'%23]/5#1\"YX"

sub_4008E1()函数将用户输入的12个字符flag与g_key进行一系列异或运算后,与g_enc进行比较,如果相等,则输入的flag验证通过;

如果这样做,得出的结果永远是错的,其实题目也有个Hint,Don’t believe your eyes..因为我们忽略了.init_array和.fini_array中的代码,而这两段中的函数,对g_key和异或算法均有影响;由上面收集的资料可知,其分别会在sub_4008E1()函数之前和之后执行;

.init_array:0000000000601000 ; =============================================================
.init_array:0000000000601000
.init_array:0000000000601000 ; Segment type: Pure data
.init_array:0000000000601000 ; Segment permissions: Read/Write
.init_array:0000000000601000 ; Segment alignment 'qword' can not be represented in assembly
.init_array:0000000000601000 _init_array     segment para public 'DATA' use64
.init_array:0000000000601000                 assume cs:_init_array
.init_array:0000000000601000                 ;org 601000h
.init_array:0000000000601000 off_601000      dq offset sub_400600    ; DATA XREF: .text:0000000000400AB1 o
.init_array:0000000000601008                 dq offset sub_400669
.init_array:0000000000601008 _init_array     ends
.init_array:0000000000601008
.fini_array:0000000000601010 ; ===============================================================
.fini_array:0000000000601010
.fini_array:0000000000601010 ; Segment type: Pure data
.fini_array:0000000000601010 ; Segment permissions: Read/Write
.fini_array:0000000000601010 ; Segment alignment 'qword' can not be represented in assembly
.fini_array:0000000000601010 _fini_array     segment para public 'DATA' use64
.fini_array:0000000000601010                 assume cs:_fini_array
.fini_array:0000000000601010                 ;org 601010h
.fini_array:0000000000601010 off_601010      dq offset sub_4005E0    ; DATA XREF: .text:0000000000400AB9 o
.fini_array:0000000000601018                 dq offset sub_400787
.fini_array:0000000000601018 _fini_array     ends
.fini_array:0000000000601018

分析发现sub_400669()函数对g_key进行了异或操作,也就是我们用来异或的g_key并不是内存中的内容:

size_t sub_400669()
{
  size_t result; // rax@1
  int i; // [sp+Ch] [bp-14h]@2

  result = dword_601340;
  if ( dword_601340 != 1 )
  {
    dword_601340 = 1;
    for ( i = 0; ; ++i )
    {
      result = strlen(key_str_1);
      if ( i >= result )
        break;
      key_str_1[i] ^= 6u;
    }
  }
  return result;
}

而sub_400787()函数中才是我们真正需要破解的代码:

char *sub_400787()
{
  char *result; // rax@13
  signed int v1; // [sp+8h] [bp-18h]@9
  int i; // [sp+Ch] [bp-14h]@1
  unsigned int j; // [sp+Ch] [bp-14h]@4
  unsigned int k; // [sp+Ch] [bp-14h]@9

  for ( i = 0; i < strlen(key_str_1); ++i )
    char_array_24[i] = key_str_1[i] ^ char_array_16[i - 12 * (((0x0AAAAAAAAAAAAAAABLL * i) >> 64) >> 3)];
  sub_4006D5(char_array_24, 24, 12);
  for ( j = 0; j <= 0x17; ++j )
  {
    if ( char_array_24[j] <= 31 )
      char_array_24[j] += 32;
  }
  v1 = 1;
  for ( k = 0; ; ++k )
  {
    result = k;
    if ( k > 0x17 )
      break;
    if ( char_array_24[k] != key_str_2[k] )
      v1 = 0;
  }
  if ( v1 )
  {
    result = output_;
    if ( output_ )
    {
      output_[15] = '!';
      puts(output_);
      exit(0);
    }
  }
  return result;
}

根据算法逆推脚本如下:

def get_flag(g_enc, g_key):
    flag = []
    size = 24
    
    for i in xrange(0, size, 1):
        if ( ord(g_enc[i]) - 0x20) <= 0x1F:
            flag.append(ord(g_enc[i])-0x20)
        else:
            flag.append(ord(g_enc[i]))
        
    for i in xrange(0,size/2,1):
        flag[i] ^= flag[17-i]
        flag[17-i] ^= flag[i]
        flag[i] ^= flag[17-i]
        
    for i in xrange(0,size,1):
        flag[i] = flag[i%(size/2)] ^ (ord(g_key[i])^6)
        
    for i in xrange(0,size/2,1):
        flag[i] = chr(flag[i])
        
    return "".join(flag[:size/2])

if __name__ == '__main__':
    g_key = "\\|Gq\\@?BelTtK5L`\\|D`d42;"
    g_enc = ";%#848N!0Z?7'%23]/5#1\"YX"
    flag = get_flag(g_enc, g_key)
    print flag
ez[@ubuntu](http://my.oschina.net/u/555627):~/xdctf$ python get_flag.py 
U'Re_AwEs0Me

根据提示结果均为小写,最终flag为:XDCTF{u’re_awes0me}